Newspaper microfilm is primarily housed at the Columbia Research Center, but reels can be viewed at all SHSMO research centers for free upon request. If you are planning to visit a SHSMO research center, please submit a research request to ensure the microfilm you'd like to view can be transferred to your preferred center and will be available on the dates of your visit.
brashear orthopedic pdf free 21
Additive manufacturing opens new avenues to overcome the invariability of global designs. It is commonly employed in medicine to personalize treatments, improve the outcomes of interventions, and reduce the costs of medical devices13,29. Additive manufacturing has already transformed several fields within rehabilitation medicine30. In orthopedics, prosthetic mandibles, skulls, noses, and ears are routinely 3D-printed30,31,32,33. Similarly, teeth, bones, and skin are layer-printed to produce tissue constructs34,35,36. However, in the physical therapy domain, additive manufacturing has been meagerly utilized, where in few instances exoskeletons for limb robotic rehabilitation were produced37,38. 3D printing could offer an additional mechanism toward patient-tailored telerehabilitation through personalized hardware.
In addition to wrist movement, the impact of the retrofit attachment on trunk movement was investigated to ensure that its use did not elicit compensatory movements17. When implementing a compensatory strategy, patients recruit body parts that are not normally involved in the movement to add degrees of freedom. For example, stroke patients tend to displace their trunk during reaching tasks to compensate for limited movement of their arm26,27,61. These movements are energetically inefficient and hinder the functional recovery of the affected limb18. We tested whether the use of the attachment caused users to compensate for their inability to execute a motion by moving their trunk. The attachment did not increase nor reduce compensatory movement. Therefore, it is capable of enhancing wrist movement without exacerbating or minimizing non-physiological movements.
Inclusion criteria for the study were; (i) Spastic diplegic type of CP; (ii) having had no orthopedic surgery, Botulinium toxin injection; (iii) having had no oral or intratheceal myorelaxant drugs; (iv) having had no severe limitations in passive range of motion at lower extremities and (v) having had no mental retardation. Each child was assessed by three physiotherapists in two different sessions a week apart. The intrarater reliability was determined by a paired comparison of the measurements for each therapist between the two assessments. The interrater reliability was determined by a paired comparison of the measurements of the three therapists on the same day.
Conservative management can be satisfactory to the patient [8, 22], with 7 patients in 7 studies being able to walk brace-free [13, 19,20,21, 25, 46, 50]. However, 9 case reports provide examples whereby this led to worsening of knee instability, progressive joint destruction, and severe gait disturbance, resulting in subsequent surgical management with total knee arthroplasty (TKA) [19,20,21, 25, 27, 29, 30, 42, 58].
For the purposes of this article, we defined older adults as those older than 65 years of age, although much of the identified literature represents even older individuals. At times we considered studies that included at least some participants under 65 years of age, for example, as low as 50 years of age if the sample mean age was over 65 years of age. The definition of special populations was purposely quite broad and included studies of individuals living with disability and/or chronic illness that may limit mobility and/or physical endurance. Older adults with disabilities or chronic health problems, and frail older adults would more appropriately fit into the special populations category, however, this category is not necessarily defined solely by age. The final product herein is centred on the literature relevant to older adults and special populations with regards to: 1) normative data (i.e., expected values); 2) changes expected from interventions; 3) controlled studies that determine exact step-based conversions of timed behaviour; 4) computing a step translation of time- and intensity-based physical activity guidelines (e.g., steps/day associated with time in moderate-to-vigorous physical activity or MVPA); 5) directly measured steps/day indicative of minimal time in MVPA taken under free-living conditions; and, 6) steps/day associated with various health outcomes. Each section represents a 'mini-review.' At times the search strategy was exhaustive and the exact number of articles identified is presented under the appropriate heading below (e.g., direct studies of step-equivalents of physical activity guidelines). Where current reviews were identified (e.g., normative data), the findings were simply summarized herein and select original articles were referred to only to make specific points. Where appropriate, details of studies were tabulated. Any apparent inconsistencies in reporting within tables (e.g., instrument brand, model, manner in which participant age is reported, etc.) reflect reporting inconsistencies extracted directly from original articles. The child/adolescent [10] and adult populations [11] literature is reviewed separately.
Table 1 displays those studies of free-living behaviour reporting the percent meeting select step-defined cut points in older adults and special populations (specifically individuals living with HIV [18], as no other relevant article was located on special populations). These limited studies indicate that achieving > 10,000 steps/day is likely to be challenging for some (e.g., those taking less than 2,500 steps/day), but not necessarily impossible for all older adults (e.g., those taking more than 9,000 steps/day).
Walking at a cadence of 96 steps/min during a clinical test represents a much higher ambulatory challenge than that measured during free-living daily activities of PAD patients monitored for one week with a step activity monitor [49]. The maximum cadence for one minute of free-living ambulation (i.e., the minute with the single highest cadence value each day) averaged 90.8 steps/min, which was significantly lower than the average value of 99 steps/min in age-matched control subjects from the same study. The maximum cadence for 30 continuous minutes of ambulation each day was only 28 steps/min in PAD patients versus 35.4 steps/min in the age-matched control subjects. Thus, the cadence observed under testing conditions may not be representative of that performed during everyday life.
As noted above, there is no evidence to inform a moderate intensity cadence specific to older adults at this time. However, using the adult cadence of 100 steps/minute to denote the floor of absolutely-defined moderate intensity walking, and multiplying this by 30 minutes, produces an estimate of 3,000 steps. To be a true translation of public health guidelines these steps should be taken over and above activities of daily living, be of at least moderate intensity accumulated in minimally 10 minute bouts, and add up to at least 150 minutes spread out over the week [3, 5, 53]. Considering a background of daily activity of 5,000 steps/day [15, 16], a computed translation of this recommendation produces an estimate of approximately 8,000 on days that include a target of achieving 30 minutes of MVPA, but approximately 7,100 steps/day if averaged over a week (i.e., 7 days at 5,000 plus 15,000 steps of at least moderate intensity). In reality, this background level of daily activity is likely to vary, and it is possible that steps/day values indicative of functional activities of daily living in some older adults (especially special populations living with disability or chronic illness) are much lower than 5,000 steps/day. Recognizing this potential, and as described above, the adult graduated step index has been extended to include 'basal activity' (
In summary, the evidence suggests that, in apparently healthy older adults, taking approximately 7,000-10,000 steps/day under free-living conditions is equivalent to accumulating 30 minutes/day of MVPA (as detected by accelerometer). The only direct evidence of a steps/day equivalent of recommended amounts of MVPA that is specific to any special population (in this case, cardiac rehabilitation patients) indicates that minimal and optimal amounts of PAEE are accumulated with approximately 6,500-8,500 steps/day, respectively. The evidence to support a more specific translation of public health guidelines into steps/day for special populations is lacking. In addition, as presented above, the wide variety and types of disabilities observed in special populations may limit individual ability to perform exercise at any rigidly defined absolute moderate intensity, thus requiring a shift toward clinical strategies focused on relative goal attainment and related improvements.
Tudor-Locke et al. [54] reported an age-specific analysis of BMI-criterion referenced and amalgamated data collected from around the world. For women aged 60-94 years of age the best cut point was 8,000 steps/day in terms of discriminating between BMI-defined normal weight and overweight/obesity. In men aged 51-88 years the value was 11,000 steps/day. The authors acknowledged that they had better confidence in the women's data since the men's value was based on a sparse sample size collected over a relatively wider age range. It is important to note that spring-levered pedometers are known to undercount steps related to obesity [65], so these BMI-referenced values can be questioned. However, even accelerometer-determined steps/day differ in a similar pattern across BMI-defined obesity categories [66]. Since pedometers are more likely to be used in clinical and public health applications, it remains important to present these pedometer-determined data as indicators of expected values in these free-living populations (that include obese individuals). 2ff7e9595c
Comments